Diana Estevez助理研究员、博士、硕士生导师
研究中心:材料分院
研究领域:磁阻抗传感器、铁磁微线、具有电磁功能的微纳米复合材料和微波测量技术
电话:
电子邮箱:dianace@zju.edu.cn
办公地址:科研大楼509
个人简介

    现为浙江大学助理教授,主要研究领域包含磁阻抗传感器、铁磁微线、具有电磁功能的微纳米复合材料和微波测量技术。她在墨西哥国立自治大学(UNAM)获得材料科学硕士学位,随后在中国科学院获得材料物理与化学博士学位。博士毕业后进入浙江大学从事博士后研究工作,主要研究方向为基于微波通讯需求的电磁结构集成复合材料。在这段时间里,她首次实现了磁性纤维的可编程设计,构建了一系列具有多种功能的电磁复合超材料。曾在Adv. Funct. Mater. ,Nano-Micro Lett. ,ACS Appl. ,Mater. ,Interfaces and Carbon等国际主要期刊发表SCI论文40余篇,被引频次超过1500次,h指数为23。除此之外,她还参加了实习,显微技术以及巴塞罗那材料科学研究所的射频(RF)/微波(MW)设计。作为首席研究员,她主持申请并获得了一项优秀海外研究者国家自然科学基金。她作为核心成员参与了国家自然科学基金面上项目和科技部重点研发计划项目。她还以科技顾问和国际科技人才创业项目的身份参与了创业项目。


科研情况

1.项目研究

· Magnetic actuated robotic probes based on ferromagnetic microwires for biomedical applications

· Lignin-derived biomass for microwave absorption

· Metasurface antennas for wireless applications

· Multifunctional flexible sensors

 

2.论文、著作

1. Estevez, D., Qin, F. (2025). High-performance Carbonaceous Absorbers: From Heterogeneous Absorbents to Data-driven Metamaterials. Carbon, 233, 119850. https://doi.org/10.1016/j.carbon.2024.119850. Invited Review. Front Cover Volume 233.

2. Uddin, A., Estevez, D*., Peng H. X., Qin, F. (2024). Design and validation of an automated and remote free space measurement system for nondestructive testing of fiber composites. Materials Today Nano, 28, 100521. https://doi.org/10.1016/j.mtnano.2024.100521

3. Estevez, D., Uddin, A., & Salem, M. (2023). Electric–magnetic synergism in BaTiO3-magnetic microwire/silicone rubber composites for enhanced microwave and electromagnetic shielding tunability. European Physical Journal Plus, 138 (9).

https://doi.org/10.1140/epjp/s13360-023-04451-x.

4. Uddin, A., Estevez, D*., Khatoon, R., & Qin, F. (2023). Thermally Stable Silicone Elastomer Composites Based on MoS2@Biomass-Derived Carbon with a High Dielectric Constant and Ultralow Loss for Flexible Microwave Electronics. ACS Applied Materials and Interfaces, 15 (22). https://doi.org/10.1021/acsami.3c02587.

5. Shen, W., Estevez, D*., Zhou, L., Xu, P., & Qin, F. (2022). Stretchable silver@CNTpoly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalization.Polymer, 38.https://doi.org/10.1016/j.polymer.2021.124413.

6. Wang, Y., Tian, Y., Estevez, D*., Peng, H. X., & Qin, F. (2021). Complementary hybrid design of solvated electrolyte membranes enabled by porous carbon reinforcement for high-performance lithium batteries. Journal of Power Sources, 506. https://doi.org/10.1016/j.jpowsour.2021.230127.

7. Estevez, D., Zhao, Y., Wang, Y., Qin, F., & Peng, H. X. (2020). Optimizing magnetoimpedance of amorphous microwires by nanocarbon-induced magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 502.

https://doi.org/10.1016/j.jmmm.2020.166527.

8. Luo, Y., Estevez, D*., Scarpa, F., Panina, L., Wang, H., Qin, F., & Peng, H.-X. (2019). Microwave Properties of Metacomposites Containing Carbon Fibres and Ferromagnetic 

Microwires. Research, 2019. https://doi.org/10.34133/2019/3239879.

9. Estevez, D., Qin, F., Luo, Y., Quan, L., Mai, Y. W., Panina, L., & Peng, H. X. (2019). Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Composites Science and Technology, 171.

https://doi.org/10.1016/j.compscitech.2018.12.016.

10. Estevez, D., Qin, F. X., Quan, L., Luo, Y., Zheng, X. F., Wang, H., & Peng, H. X. (2018). Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable

microwave absorption. Carbon, 132. https://doi.org/10.1016/j.carbon.2018.02.083.

11. Estévez, D., Li, J., Liu, G., Man, Q., Chang, C., Wang, X., & Li, R. W. (2015). Role of the Co-based microwires/polymer matrix interface on giant magneto impedance response.

Journal of Alloys and Compounds, 643(S1). https://doi.org/10.1016/j.jallcom.2014.12.194.

12. Estévez, D., He, A., Chang, C., Man, Q., Wang, X., & Li, R. W. (2015).Magnetoinductance and magnetoimpedance response of Co-based multi-wire arrays.Journal of Magnetism and Magnetic Materials, 393.

https://doi.org/10.1016/j.jmmm.2015.05.080.

13. Estévez, D., Betancourt, I., & Montiel, H. (2012). Magnetization dynamics and ferromagnetic resonance behavior of melt spun FeBSiGe amorphous alloys. Journal of Applied Physics, 112(5). https://doi.org/10.1063/1.4752250.

14. Estévez, D.*., & Betancourt, I. (2012). Effect of germanium on the microstructure and the magnetic properties of Fe-B-Si amorphous alloys. Journal of Non-Crystalline Solids,

358(15). https://doi.org/10.1016/j.jnoncrysol.2012.05.020.

15. Chen, Y., Estevez, D., Xu, P., & Qin, F. (2024). Multifunctional Conductive Hydrogel Composites with Nickel Nanowires and Liquid Metal Conductive Highways. ACS Appl.

Mater. Interfaces 16, 29267 (FI :8.5, Citas : 6)

16. Zhu, Z., Estevez, D., Feng, T., Chen, Y., Li, Y., Wei, Wang, Y., Wang, Y., Zhao, L., Jawed, S. A., Qin, F., (2024) A Novel Induction-Type Pressure Sensor based on MagnetoStress Impedance and Magnetoelastic Coupling Effect for Monitoring Hand Rehabilitation. Small, 2400797. https://doi.org/10.1002/smll.202400797.

17. Tian, Y., Estevez, D., Wang, G., Peng, M., & Qin, F. (2024). Macro-ordered porous carbon nanocomposites for efficient microwave absorption. Carbon, 218.https://doi.org/10.1016/j.carbon.2023.118614

18. Chen, Y., Estevez, D., Xu, P., & Qin, F. (2022). Wearable, washable and ultra-high environmental tolerant solid-liquid composite sensor based on IL@PU microcapsules.Composites Communications, 35. https://doi.org/10.1016/j.coco.2022.101329

19. Uddin, A., Estevez, D., & Qin, F. X. (2022). From functional units to material design: A review on recent advancement of programmable microwire metacomposites. In Composites Part A: Applied Science and Manufacturing (Vol. 153).

https://doi.org/10.1016/j.compositesa.2021.106734

20. Tian, Y., Estevez, D., Wei, H., Peng, M., Zhou, L., Xu, P., Wu, C., Yan, M., Wang, H.,Peng, H. X., & Qin, F. (2021). Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chemical Engineering Journal, 421. https://doi.org/10.1016/j.cej.2021.129781

21. Uddin, A., Estevez, D., Qin, F. X., & Peng, H. X. (2020). Programmable microwire composites: From functional units to material design. Journal of Physics D: Applied Physics, 53(15). https://doi.org/10.1088/1361-6463/ab6ccd

22. Zhang, J., Estévez, D., Zhao, Y. Y., Huo, L., Chang, C., Wang, X., & Li, R. W. (2016). Flexural Strength and Weibull Analysis of Bulk Metallic Glasses. Journal of Materials

Science and Technology, 32(2). https://doi.org/10.1016/j.jmst.2015.12.016

23. Zhao, Y. Y., Estévez, D., Chang, C., Men, H., Wang, X., & Li, R. W. (2015). Preparation of nanoporous silver micro-particles through ultrasonic-assisted dealloying of Mg-Ag alloy ribbons. Materials Letters, 144. https://doi.org/10.1016/j.matlet.2015.01.011

24. Li, J. W., Estévez, D., Jiang, K. M., Yang, W. M., Man, Q. K., Chang, C. T., & Wang, X.M. (2014). Electronic-structure origin of the glass-forming ability and magnetic properties

in Fe-RE-B-Nb bulk metallic glasses. Journal of Alloys and Compounds, 617. 

https://doi.org/10.1016/j.jallcom.2014.07.222

25. Qiang, J., Estevez, D., Chang, C., Man, Q., Li, R. W., Wang, X., & Inoue, A. (2014). High strength CoFe-based glassy alloy with high thermal stability. Materials Letters, 114.

https://doi.org/10.1016/j.matlet.2013.09.120

26. Qiang, J., Estevez, D., Dong, Y., Man, Q., Chang, C., Wang, X., & Li, R. W. (2014). Giant magnetoimpedance effect enhanced by thermoplastic drawing. Journal of Applied Physics,

116 (9). https://doi.org/10.1063/1.4895055

27. Chen, Q., Shen, J., Estevez, D., Chen, Y., Zhu, Z., Yin, J., & Qin, F. (2023). Ultraprecise 3D Printed Graphene Aerogel Microlattices on Tape for Micro Sensors and E-Skin. Advanced Functional Materials, 33(33). https://doi.org/10.1002/adfm.202302545

28. Uddin, A., Qin, F., Estevez, D., Gorbatov, K., Zhao, Y., & Makhnovskiy, D. (2023). Broadband measurements of the surface impedance in ferromagnetic wires as a boundary condition for scattering problems. Measurement Science and Technology, 34(8). https://doi.org/10.1088/1361-6501/accd09

29. Wang, G., Li, C., Estevez, D., Xu, P., Peng, M., Wei, H., & Qin, F. (2023). Boosting Interfacial Polarization Through Heterointerface Engineering in MXene/Graphene Intercalated-Based Microspheres for Electromagnetic Wave Absorption. Nano-Micro Letters, 15(1). EIS Top Article Award 2024 https://doi.org/10.1007/s40820-023-01123-4

30. Qin, F., Peng, M., Estevez, D., & Brosseau, C. (2022). Electromagnetic composites: From effective medium theories to metamaterials. Journal of Applied Physics, 132(10).

https://doi.org/10.1063/5.0099072

31. Uddin, A., Khatoon, R., Estevez, D., Salem, M., Ali, A., Attique, S., Lu, J., & Qin, F. X.(2022). Waste paper cellulose based-MoS2 hybrid composites: Towards sustainable green

shielding. Materials Today Communications, 31.

https://doi.org/10.1016/j.mtcomm.2022.103858

32. Jiang, S., Wang, H., Estevez, D., Huang, Y., Zhang, L., Shen, H., Ning, Z., Qin, F., & Sun, J. (2021). Surface microstructural design to improve mechanical and giant magnetoimpedance properties of melt-extracted CoFe-based amorphous wires. Materials and Design, 204. https://doi.org/10.1016/j.matdes.2021.109642

33. Xu, Y. L., Uddin, A., Estevez, D., Luo, Y., Peng, H. X., & Qin, F. X. (2020). Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference

shielding and low microwave reflectivity. Composites Science and Technology, 189. 

https://doi.org/10.1016/j.compscitech.2020.108022

34. Zhao, Y., Wang, Y., Estevez, D., Qin, F., Wang, H., Zheng, X., Makhnovskiy, D., & Peng, H. (2020). Novel broadband measurement technique on PCB cells for the field- And stressdependent impedance in ferromagnetic wires. Measurement Science and Technology, 31(2). https://doi.org/10.1088/1361-6501/ab4556

35. Zhang, Y. C., Qin, F. X., Estevez, D., Franco, V., & Peng, H. X. (2020). Structure, magnetic and magnetocaloric properties of Ni2MnGa Heusler alloy nanowires. Journal of

Magnetism and Magnetic Materials, 513. https://doi.org/10.1016/j.jmmm.2020.167100

36. Quan, L., Qin, F. X., Estevez, D., Lu, W., Wang, H., & Peng, H. X. (2019). The role of graphene oxide precursor morphology in magnetic and microwave absorption properties of nitrogen-doped graphene. Journal of Physics D: Applied Physics, 52(30). https://doi.org/10.1088/1361-6463/ab1dac

37. Uddin, A., Qin, F. X., Estevez, D., Jiang, S. D., Panina, L. V., & Peng, H. X. (2019). Microwave programmable response of Co-based microwire polymer composites through wire microstructure and arrangement optimization. Composites Part B: Engineering, 176. 

https://doi.org/10.1016/j.compositesb.2019.107190

38. Li, Y., Qin, F., Estevez, D., Wang, H., & Peng, H. X. (2018). Interface Probing by Dielectric Frequency Dispersion in Carbon Nanocomposites. Scientific Reports, 8(1).

https://doi.org/10.1038/s41598-018-32452-9

39. Quan, L., Qin, F. X., Estevez, D., Wang, H., & Peng, H. X. (2017). Magnetic graphenefor microwave absorbing application: Towards the lightest graphene-based absorber. Carbon, 125. https://doi.org/10.1016/j.carbon.2017.09.101

40. Zhao, Y. Y., Zhang, G., Estévez, D., Chang, C., Wang, X., & Li, R. W. (2015). Evolution of shear bands into cracks in metallic glasses. Journal of Alloys and Compounds, 621.

https://doi.org/10.1016/j.jallcom.2014.09.205

41. Zhao, Y. Y., Men, H., Estévez, D., Liu, Y., Wang, X., Li, R. W., & Chang, C. (2014).Mg-based bulk metallic glass composite containing in situ microsized quasicrystalline

particles. Scripta Materialia, 78–79. https://doi.org/10.1016/j.scriptamat.2014.01.019

42. Li, J., Yang, W., Estévez, D., Chen, G., Zhao, W., Man, Q., Zhao, Y., Zhang, Z., & Shen, B. (2014). Thermal stability, magnetic and mechanical properties of Fe-Dy-B-Nb bulk metallic glasses with high glass-forming ability. Intermetallics, 46.

https://doi.org/10.1016/j.intermet.2013.11.013

43. Wei, H., Tian, Y., Chen, Q., Estevez, D., Xu, P., Peng, H. X., & Qin, F. (2021).Microwave absorption performance of 2D Iron-Quinoid MOF. Chemical Engineering Journal, 405, 126637. https://doi.org/10.1016/J.CEJ.2020.126637

44. Quan, L., Qin, F. X., Lu, H. T., Estevez, D., Wang, Y. F., Li, Y. H., Tian, Y., Wang, H.,& Peng, H. X. (2021). Sequencing dual dopants for an electromagnetic tunable graphene.Chemical Engineering Journal, 413. https://doi.org/10.1016/j.cej.2020.127421

45. Zhao, Y. J., Zheng, X. F., Qin, F. X., Estevez, D., Luo, Y., Wang, H., & Peng, H. X.(2020). A self-sensing microwire/epoxy composite optimized by dual interfaces and

periodical structural integrity. Composites Part B: Engineering, 182. 

https://doi.org/10.1016/j.compositesb.2019.107606

46. Shi, Y., Wang, J., Song, K., Shi, H., Uddin, A., Qin, F., Estevez, D., & Peng, H. X. (2021). Vertical interface augmented tunability of scattering spectra in ferromagnetic microwire/silicone rubber metacomposites. EPJ Applied Metamaterials, 8. https://doi.org/10.1051/epjam/2021003

47. Zhang, M., Fang, X., Zhang, Y., Guo, J., Gong, C., Estevez, D., Qin, F., & Zhang, J.(2020). Ultralight reduced graphene oxide aerogels prepared by cation-assisted strategy for excellent electromagnetic wave absorption. Nanotechnology, 31(27). https://doi.org/10.1088/1361-6528/ab851d

48. Xu, X., Yao, F., Ali, O. A. A., Xie, W., Mahmoud, S. F., Xie, P., El-Bahy, S. M., Huang, M., Liu, C., Fan, R., Guo, Z., Du, A., Estevez, D., Qin, F., Peng, H., Young, D. P., & Gu,

H. (2022). Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 5(3). https://doi.org/10.1007/s42114-022-00538-8

49. Zhao, S., Qin, F., Luo, Y., Wang, Y., Uddin, A., Zheng, X., Estevez, D., Wang, H., & Peng, H. X. (2020). Responsive left-handed behaviour of ferromagnetic microwire composites by in-situ electric and magnetic fields. Composites Communications, 19. 

https://doi.org/10.1016/j.coco.2020.04.012

3.成果奖项

· Ningbo Yongjiang Talent 2024

· Front Cover Volume 233, Carbon Journal

· EIS Top Article Award 2024, Nano-Micro Letters

· NSFC for Excellent Overseas Researchers


 


关闭