2004年毕业于浙江大学高分子材料与工程专业(浙江大学竺可桢学院工程教育高级班),2006年6月获浙江大学高分子材料与工程硕士学位(导师:沈家骢院士和计剑教授),2011年4月获新加坡南洋理工大学化学与生物医学工程博士学位(导师:Prof. Chang Ming Li)。曾先后在新加坡南洋理工大学先进生物纳米系统中心、澳大利亚科廷大学燃料与能源技术研究所、新加坡国立大学化学系、南洋理工大学电气与电子工程学院、耶鲁大学化学工程与环境工程系从事博士后和访问学者研究(2011-2019)。2014.6-2020.12西南大学任副教授, 2021年1月入职浙江大学宁波科创中心(浙江大学化学工程学院兼聘)。2014年入选重庆市海外高层次人才引进计划,2018年入选重庆市留学人员回国创业创新支持计划(优秀类),2021年入选宁波市甬江引才工程创新人才项目。
致力于新型自组装材料及其在氢能领域的应用基础和技术转化研究,在Advanced Functional Materials、Advances in Colloid and interface Science、Small和Journal of Materials Chemistry A等领域内权威杂志上发表高质量SCI期刊论文120余篇,总引用5700多次,h-index为44。其中第一作者/通讯作者论文近80篇(影响因子大于7的39篇,大于10的16篇,7篇Hot Article,5篇VIP,4篇封面)申请国家发明专利17项(已获授权13项,3项实现转化)。长期担任包括Advanced Materials和Advanced Energy Materials等60多种杂志特邀审稿人,担任Discover Catalysis的Section Editor和Journal of Energy and Sustainability的Editorial Board Member。
科研情况
代表性论文:
1.Yan, Q.; Liu, Y.; Zhao, Y.; Zhou, X.; Yuan, W.* Molten salt-mediated electrosynthesis of MoS2 nanosheet-supported Rh nanoclusters for highly efficient electrocatalytic hydrogen evolution. Chemical Communications 2025, 61, 3700.
2.Hu, W.; Xia, Q.; Zhang, L. Y.; Lu, J.; He, Q.; Yuan, W.* In situ controllably self-assembled amorphous Co–TDPAT MOFs as superior cocatalysts of α-Fe2O3 nanosheet arrays for highly efficient and ultrastable photoelectrochemical oxygen evolution. Journal of Materials Chemistry A 2025, 13, 4614.
3.Hu, W.; Yan, Q.;* Ma, S.; Gao, R.; Wang, Q.;* Yuan, W.* Surface-selenization formed NiFe MOF@NiSex heterogeneous arrays for enhanced oxygen evolution and methanol electrooxidation. Journal of Electroanalytical Chemistry 2024, 975, 118789.
4.Hu, W.; Yan, Q.; Wang, X.; Lu, J.; He, Q.; Zhang, Q.; Yuan, W.* In Situ Controllably Self-Assembled CoFe-TDPAT Metal–Organic Framework Nanosheet Arrays on Iron Foam as Highly Efficient Bifunctional Catalytic Electrodes for Overall Water Splitting at Large Current Density. Advanced Functional Materials 2024, 2411904.
5.Xia, Q.; Li, Z.; Liu, D.; Song, N.; Zhang, N.; Ma, S.; Wu, Z.;* Yuan, W.;* Highly Effective Electrolytes Toward High-Performance Aluminum/Seawater Batteries. Batteries & Supercaps 2024, e202400307.
6.Guan, Q.; Sun, S.; Ge, X.; Zhang, F.; Qu, L.; Yin, C.; Yuan, W.;* Zhang, L.* Epitaxial growth of Pd clusters on N-doped Ag nanowires for oxygen reduction reaction. ChemPhysMater 2024, DOI: 10.1016/j.chphma.2024.06.004.
7.Zhang, S.; Zhao, W.; Liu, C.; Zeng, J.; He, Z.; Wang, C.; Yuan, W.;* Wang, Q.* Flower-like CoO nanowire-decorated Ni foam: A non-invasive electrochemical biosensor for glucose detection in human saliva. Applied Materials Today 2024, 36, 102083.
8.Ge, X.; Guan, Q.; Zhang, F.; Sun, S.; Xu, Y.; Zhang, K.; Yuan, W.;* Zhang, L. Y.* Direct epitaxial growth of Au nanoparticles on Pd metallene enables robust oxygen reduction electrocatalysis. Materials Today Energy 2024, 39, 101471.
9.Zhao, M.; Zhang, S.; Hu, Y.; Xing, H.; Li, C.; Yuan, W.;* Sun, W.; Guo, C.;* Li, C. M.* Ru-doping modulated electronic structure of bimetallic phosphide toward efficient overall water splitting. International Journal of Hydrogen Energy 2024, 51, 998.
10.Li, R.; Shen, Z.; Zheng, H.; Jin, L.; Zhang, Y.; Yuan, W.;* Wang, X.* Three-dimensional nitrogen and oxygen co-doped hierarchical porous carbons prepared from polyacrylonitrile/polyamic acid composite films for supercapacitors. Journal of Energy Storage 2023, 73, 109521.
11.Yang, Q.; Zhang, L. Y.; Ma, S.; Wang, W.; Zhao, M.; Yuan, W.;* Li, C. M. Self-assembled TiO2 Nanopore-Confined Growth of Pd NPs on Pristine Graphene for Superior Electrocatalytic Performance toward Formic Acid Oxidation. ACS Applied Energy Materials 2023, 6, 9318.
12.Li, C.; Ma, S.; Zhao, M.; Jing, M.; Yuan, W.;* Li, C. Self-Assembled α‑Fe2O3@Co3O4/Graphene Quantum Dot Core−Hybrid Shell Wormlike Nanoarrays with Synergistic Effects for Photoelectrochemical Water Oxidation. ACS Sustainable Chemistry & Engineering 2023, 11, 12102.
13.Pan, Y.; Wang, X.; Lin, H.; Xia, Q.; Jing, M.; Yuan, W.;* Li, C. M. Three-dimensional Ni foam supported NiCoO2@Co3O4 nanowire-on-nanosheet arrays with rich oxygen vacancies as superior bifunctional catalytic electrodes for overall water splitting. Nanoscale 2023, 15, 14068. (Highlighted by RSC China)
14.Liao X.; Zhang, T.; Dai, M.; Yuan, W.;* Lin, H. Construction of Co(CO3)0.5OH/Cu Mott-Schottky heterojunctions on Ni foams as an efficient electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds 2023, 936, 168303.
15.Zhu Z.; Hu, W.; Wu, X.; Zhang, Q.; Hu, Y.; Yan, Q.; Wang, X.; Yuan, W.* In situ self-assembled macroporous interconnected nanosheet arrays of Ni-1,3,5-benzenetricarboxylate metal-organic framework on Ti mesh as high-performance oxygen evolution electrodes. Journal of Colloid and Interface Science 2023, 639, 274.
16.Li, C.; Lin, H.; Jing, M.; Zhang, L. Y.; Yuan, W.;* Li, C. M. ZnO nanowire arrays with in situ sequentially self-assembled vertically oriented CdS nanosheets as superior photoanodes for photoelectrochemical water splitting. Sustainable Energy & Fuels 2022, 6,3240.
17.Wang, X.; Le, J. B.; Fei, Y.; Gao, R.; Jing, M.; Yuan, W.;* Li, C. M. Self-assembled ultrasmall mixed Co–W phosphide nanoparticles on pristine graphene with remarkable synergistic effects as highly efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A 2022, 10, 7694.
18.Wang, X.; Fei, Y.; Chen, J.; Pan, Y.; Yuan, W.;* Zhang, L. Y.; Guo, C. X.; Li, C. M.* Directionally In Situ Self-Assembled, High-Density, Macropore-Oriented, CoP-Impregnat4ed, 3D Hierarchical Porous CArbon Sheet Nanostructure for Superior Electrocatalysis in the Hydrogen Evolution Reaction. Small 2022, 18, 2103866.
19.Fan, X.; Zhao, M.; Li, T.; Zhang, L. Y.; Jing, M.; Yuan, W.;* Li, C. M. In situ self-assembled N-rich carbon on pristine graphene as a highly effective support and cocatalyst of short Pt nanoparticle chains for superior electrocatalytic activity toward methanol oxidation. Nanoscale 2021, 13, 18332.
20.Jiang, M.; Meng, X.; Zhang, W.; Huang, H.; Wang, F.; Wang, S.; Ouyang, Y.; Yuan, W.;* Zhang. Z. Y.* Facile synthesis of heterophase sponge-like Pd toward enhanced formic acid oxidation. Electrochemistry Communications 2021, 126, 107004.
21.Hu, X.; Jing, M.;* Yang, H.; Liu, Q.; Chen, F.; Yuan, W.;* Kang, L.; Li, D.; Shen, X.* Enhanced ionic conductivity and lithium dendrite suppression of polymer solid electrolytes by alumina nanorods and interfacial graphite modification. Journal of Colloid and Interface Science 2021, 590, 50.
22.Pan, Y.; Wang, X.; Lu J.; Yan, Q.; Yuan, W.;* Li, C. M. Three-Dimensional Ni Foam-Supported CoO Nanoparticles/N-Doped Carbon Multilayer Nanocomposite Electrode for Oxygen Evolution. ACS Applied Nano Materials 2020, 3, 11416.
23.Zhang, L.; Jing, M.;* Yang, H.; Liu, Q.; Chen, F.; Yuan, W.;* Liu, M.; Ji, Y.; Shen, X.* Highly Efficient Interface Modification between Poly(Propylene Carbonate)-Based Solid Electrolytes and a Lithium Anode by Facile Graphite Coating. ACS Sustainable Chemistry & Engineering 2020, 8, 17106.
24.Yuan, W.;* Weng, G. M.; Lipton, J.; Li C. M.; Van Tassel, P. R.; Taylor, A. D.* Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Advances in Colloid and Interface Science 2020, 282, 102200.
25.Zhao, M.; Li, H.; Yuan, W.;* Li, C. M.;* Tannic Acid-Mediated In Situ Controlled Assembly of NiFe Alloy Nanoparticles on Pristine Graphene as a Superior Oxygen Evolution Catalyst. ACS Applied Energy Materials 2020, 3, 3966.
26.Yuan, W.;* Li, C.; Zhao, M.; Zhang, J.; Li, C. M.; Jiang, S. P.* In situ self-assembled 3-D interconnected pristine graphene supported NiO nanosheets as superior catalysts for oxygen evolution. Electrochimica Acta 2020, 342, 13618.
27.Chen, H.; Liu, Q.; Jing, M.;* Chen, F.; Yuan, W.;* Ju, B.; Tu, F.; Shen, X.;* Qin, S. Improved Interface Stability and Room-temperature Performance of Solid-State Lithium Battery by Integrating Cathode/Electrolyte and Graphite Coating. ACS Applied Materials & Interfaces 2020, 12, 15120.
28.Yuan, J.; Li, C.; Li, T.; Jing, M.; Yuan, W.;* Li, C. M. Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via polymer-mediated self-assembly of CoOx nanoparticles. Solar Energy Materials & Solar Cells 2020, 207, 110349.
29.Wang, X.; Fei, Y.; Wang, W.; Yuan, W.;* Li, C. M. Polymer-Mediated Self-Assembly of Amorphous Metal-Organic Complexes toward Fabrication of Three-Dimensional Graphene Supported CoP Nanoparticle-Embedded N-Doped Carbon as a Superior Hydrogen Evolution Catalyst. ACS Applied Energy Materials 2019, 2, 8851.
30.Zhao, M.; Li, T.; Jia, L.; Li, H.; Yuan, W.;* Li, C. M. Pristine Graphene Supported Nitrogen-Doped Carbon Self-Assembled from Glucaminium-Based Ionic Liquids as Metal-Free Catalyst for Oxygen Evolution. ChemSusChem 2019, 12, 5041.
31.Jing, M.;* Yang, H.; Han, C.; Chen, F.; Yuan, W.;* Ju, B.; Tu, F.; Shen, X.;* Qin, S. Improving room-temperature electrochemical performance of solid-state lithium battery by using electrospun La2Zr2O7 fibers-filled composite solid electrolyte. Ceramics International 2019, 45, 18614.
32.Yuan, W.;* Pan, Y.; Li, C. M.; Jiang, S. P. Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode. International Journal of Hydrogen Energy 2019, 44, 22947.
33.Li, C.; Chen, Z.; Yuan, W.;* Xu, Q. H.; Li, C. M. In-situ growth of α-Fe2O3@Co3O4 core-shell wormlike nanoarrays for highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11, 1111.
34.Fan, X.; Yuan, W.;* Zhang, D. H.; Li, C. M. Heteropolyacid-Mediated Self-Assembly of Heteropolyacid-Modified Pristine Graphene Supported Pd Nanoflowers for Superior Catalytic Performance toward Formic Acid Oxidation. ACS Applied Energy Materials 2018, 1, 411.
35.Fan, X.; Wang, X.; Yuan, W.;* Li, C. M. Diethylenetriamine-mediated self-assembly of three-dimensional hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected network as efficient electrocatalysts toward hydrogen evolution. Sustainable Energy & Fuels 2017, 1, 2172.
36.Wang, X.; Yuan, W.;* Yu, Y.; Li, C. M. Synthesis of Cobalt Phosphide Nanoparticles Supported on Pristine Graphene by Dynamically Self-Assembled Graphene Quantum Dots for Hydrogen Evolution. ChemSusChem 2017, 10, 1014.
37.Zhao, M.; Yuan, W.;* Li, C. M. Controlled self-assembly of Ni foam supported poly(ethyleneimine)/reduced graphene oxide three-dimensional composite electrodes with remarkable synergistic effects for efficient oxygen evolution. Journal of Materials Chemistry A 2017, 5, 1201.
38.Yuan, W.; Wang, X.; Zhong, X.; Li, C. M. CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces 2016, 8, 20720.
39.Yuan, W.; Zhao, M.; Yuan, J.; Li, C. M. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode. Journal of Power Sources 2016, 319, 159.
40.Yuan, W.; Fan, X.; Cui, Z.; Chen, T.; Dong, Z.; Li, C. M. Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. Journal of Materials Chemistry A 2016, 4, 7352.
41.Yuan, W.; Yuan, J.; Xie, J.; Li, C. M. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core−Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2016, 8, 6082.
42.Yuan, W.; Shen, P. K.; Li, C. M.; Jiang, S. P. Self-assembled CeO2 on carbon nanotubes supported Au nanoclusters as superior electrocatalysts for glycerol oxidation reaction of fuel cells. Electrochimica Acta 2016, 190, 817.
43.Li, T.; Wang, X.; Yuan, W.;* Li, C. M. Unique Co-Catalytic Behavior of Protic Ionic Liquids as Multifunctional Electrolytes for Water Splitting. ChemElectroChem 2016, 3, 204.
44.Zhong, X.;ǂ Yuan, W.;ǂ Kang, Y.; Xie, J; Hu, F.; Li, C. M. Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing. ChemElectroChem 2016,3,144.
45.Yuan, W.; Cheng, Y.; Shen, P. K.; Li, C. M.; Jiang, S. P. Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. Journal of Materials Chemistry A 2015, 3, 1961.
46.Yuan, W.; Lu, S.; Xiang, Y.; Jiang, S. P. Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electrocatalysts for proton exchange membrane fuel cells. RSC Advances 2014, 4, 46265.
47.Yuan, W.; Shen, P. K.; Jiang, S. P. Controllable synthesis of graphene supported MnO2 nanowires via self-assembly for enhanced water oxidation in both alkaline and neutral solutions. Journal of Materials Chemistry A 2014, 2, 123.
48.Yuan, W.; Jiang S. P. In-situ Self-Assembly of Graphene Supported MnO2 Nanowires for Enhanced Water Oxidation in Both Alkaline and Neutral Solutions. ECS Transactions 2013, 58, 63.
49.Yuan, W.; Lu, Z.; Wang H. Li, C. M. Sacrificial polymer thin-film template with tunability to construct high-density Au nanoparticle arrays and their refractive index sensing. Physical Chemistry Chemical Physics 2013, 15, 15499.
50.Yuan, W.; Lu, Z.; Li, C. M. Self-assembling microsized materials to fabricate multifunctional hierarchical nanostructures on macroscale substrates. Journal of Materials Chemistry A 2013, 1, 6416.
51.Yuan, W.; Lu, Z.; Liu, J.; Wang, H.; Li, C. M. ZnO nanowire array-templated LbL self-assembled polyelectrolyte nanotube arrays and application for charged drug delivery. Nanotechnology 2013, 24, 045605.
52.Guo, L.;ǂ Yuan, W.;ǂ Lu, Z; Li, C. M. Polymer/nanosilver composite coatings for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 439, 69.
53.Yuan, W.; Lu, Z.; Li, C. M. Charged drug delivery by ultrafast exponentially grown weak polyelectrolyte multilayers: amphoteric properties, ultrahigh loading capacity and pH-responsiveness. Journal of Materials Chemistry 2012, 22, 9351.
54.Yuan, W.; Lu, Z.; Wang, H.; Li, C. M. Stimuli-Free Reversible and Controllable Loading and Release of Proteins under Physiological Conditions by Exponentially Growing Nanoporous Multilayered Structure. Advanced Functional Materials 2012, 22, 1932.
55.Yuan, W.; Lu, Z.; Li, C. M. Controllably layer-by-layer self-assembled polyelectrolytes/nanoparticle blend hollow capsules and their unique properties. Journal of Materials Chemistry 2011, 21, 5148.
56.Yuan, W.; Li, C. M. Exponentially growing layer-by-layer assembly to fabricate pH-responsive hierarchical nanoporous polymeric film and its superior controlled release performance. Chemical Communications 2010, 46, 9161.
57.Yuan, W.; Li, C. M. Direct Modulation of Localized Surface Plasmon Coupling of Au Nanoparticles on Solid Substrates via Weak Polyelectrolyte-Mediated Layer-by-Layer Self Assembly. Langmuir 2009, 25, 7578.
58.Yuan, W.; Dong, H.; Li, C. M.; Cui, X.; Yu, L.; Lu, Z.; Zhou, Q. pH-Controlled Construction of Chitosan/Alginate Multilayer Film: Characterization and Application for Antibody Immobilization. Langmuir 2007, 23, 13046.
59.Yuan, W.; Fu, J.; Su, K.; Ji, J. Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids and Surfaces B: Biointerfaces 2010, 76, 549.
60.Yuan, W.; Ji, J.; Fu, J.; Shen, J. A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007, 85B, 556.
发明专利
(1) 袁伟永; 朱泽慧; 胡伟光; 吴潇; 新型MOF基析氧电极材料及其制备方法和应用, ZL202210684314.2
(2) 袁伟永; 高爱; 李长明; 一种基于α型氧化铁蠕虫状纳米结构阵列的光阳极的水热制备方法及其产品和应用, ZL202110372570.3
(3) 袁伟永; 盘易香; 李长明; 一种负载氧化亚钴/氮掺杂碳的泡沫镍复合材料及其制备方法和应用, ZL201910425364.7
(4) 袁伟永; 杨其毅; 李长明; 一种石墨烯担载钯纳米粒子复合材料及其制备方法和应用, ZL202010693867.5
(5) 袁伟永; 李春梅; 李长明; 磷化铁修饰α型氧化铁蠕虫状纳米结构阵列光阳极及其制备方法和应用, ZL201710575665.9
(6) 袁伟永; 李春梅; 李长明; 四氧化三钴复合α型氧化铁蠕虫状纳米结构阵列光阳极及其制备方法和应用, ZL201710575114.2
(7) 袁伟永; 范秀玲; 李长明; 一种石墨烯支撑Pd纳米花催化剂的制备方法及其产品和在甲酸燃料电池中的应用, ZL201610479588.2
(8) 袁伟永; 范秀玲; 李长明; 石墨烯支撑Pt纳米粒子催化剂的制备方法及其产品和应用, ZL201710883606.8
(8) 袁伟永; 王晓艳; 李长明; 一种活性炭上负载磷化钴的催化剂及其制备方法和应用, ZL201510340184.0
(9) 袁伟永; 袁佳; 李长明; 光电解水用氧化亚铜复合二氧化钛纳米线阵列光阳极材料及其制备方法, ZL201510369264.9
(10) 袁伟永; 赵明; 李长明; 三维析氧电极阳极材料及其制备方法和应用, ZL201510296779.0